Spring 2010

Simulating Urban Place: The Importance of Experience

The College of Environmental Design was founded in the belief that the design of buildings, neighborhoods, landscapes and regions should be genuinely concerned with the conditions of all humans and be relatively free from doctrine of any persuasion.

It was possible for such a humanistic tradition to emerge because those who founded the college held a commitment to an integrated view of education and had a high tolerance for each other’s approaches. With the exception of Catherine Bauer, the founding members were raised locally and rooted in the Bay Area experience: William Wurster had his roots in Stockton , T. J. Kent and Fran Violich grew up in San Francisco, Vernon DeMars in Oakland and Garrett Eckbo in Alameda; after an exposure to East Coast schools all embraced modern architecture’s social agenda. They practiced regionally; several of them worked prominently in the field of low-income housing, others, as founders of Telesis in 1939 and motivated by an appreciation for the Bay Area’s exceptional beauty, reacted against the mindless urban development that accelerated in the decades after WWII. As mentors they pointed out that no matter the size of an individual designer’s contribution, it was possible to act intelligently with an eye on the larger environmental, social and political context.

In the 1960s, the college attracted a large number of faculty members from further afield, especially in the field of urban planning and design. Donald Appleyard, who came from MIT together with Roger Montgomery, who came from Washington University in Saint Louis, both started to offer an interdisciplinary urban design curriculum to graduate students from all three departments.

Urban design as a tie between the three departments became the college’s hallmark and over the last four decades a group of urban designers with roots in design practice shared an interest in research and teaching that led to a normative stance, emphasizing more the prescriptive, “what should be,” and less the descriptive, reflective mode, emphasizing the “what is.” The colleagues I am thinking of include Don Logan, Dan Solomon, Christopher Alexander, Clare Cooper Marcus, and Sam Davis, who taught at Berkeley when I joined in 1976. Allan Jacobs came to Berkeley at about the same time. During Richard Bender’s time as CED Dean, Donlyn Lyndon, Randy Hester, Michael Southworth, Elizabeth Deakin and Linda Jewell joined; Nezar Alsayyad came to the faculty after he completed his PhD with Spiro Kostov; René Davids and Renée Chow, Louise Mozingo and Walter Hood joined during Roger Montgomery’s tenure as Dean. Mark Anderson, Elizabeth MacDonald, Nicholas de Monchaux, Paz Gutierez, Karl Kuhlmann and Ron Rael are the most recent members of the faculty with a dedication to urban design.

A comparison of urban vitality in Los Angeles, Shanghai and Mumbai
Figure 1 Enlarge [+]Cities in the Laboratory, a conceptual view: A comparison of urban vitality in Los Angeles, Shanghai and Mumbai, measured here per unit of surface area, Venice Biennale, 2006.

Academic groups need jolters. Peter Hall jolted the group saying that increasingly the form of urban regions would need to be studied; Manuel Castells pointed the group towards a major shift in how society uses space. The information age had changed how people interact socially at all levels. Two decades earlier Mel Webber jolted the members of the group with his thesis that local place was growing less important as society was becoming more and more placeless. The polemics of the discussion made students in the simulation laboratory work on a film Webberville versus Applelandia. In one community, the curtains are drawn to keep out the glare as residents communicate with their peers in faraway places; in the other community, the residents erect barricades in the streets to protect against traffic, environmental degradation and for greater social justice.

Not unique to Berkeley, there still exists a healthy tension between those who view material space relative to socioeconomic dimensions and those who view the experience of place as an inspiration for design. It is therefore important to reflect on the power of direct experience, and the power of abstractions as something that education can bridge. If more bridges between the two modes of thinking, planning and design can be made, the college can confidently face the next 50 years.

The proposed Citti di Porta Nova, Milan
Figure 2 Enlarge [+]Cities in the Laboratory, a perceptual view: The proposed Citti di Porta Nova, Milan. (Bosselmann/Urban Simulation Laboratory, Polimi).

The Environmental Simulation Laboratory, founded in 1972 by Appleyard, provides such a bridge. Ahead of its time, it was built on the premise that it is possible to bring parts of the city into a laboratory in order to experiment with changes to urban form. Throughout history and across disciplines simulations have been used to forecast conditions that might become reality. The applications of simulations are broad and have grown in engineering, design and planning as well as navigational training, medicine and education. Fundamentally, two types of simulations are possible: existing and future urban conditions can be explained as concepts or as experiences. When computational techniques became available in the 1970s, conceptual simulations received a major boost. A decade later, with the advent of digital image processing, the sensory or perceptional forms of simulations advanced. By now, animations, virtual walks or drives through photorealistic settings have become commonplace. But with such advancements it is important to remember that simulations remain abstractions of reality. What is selected from reality, and what is left out, can significantly influence the outcome of simulations, thus the future form of cities.

Milan skyline
Figure 3 Enlarge [+]View from the roof of the Duomo in Milan towards the Alps. The cupola of the Galleria is in the front to the left.
Milan skyline
Figure 4 Enlarge [+]Understanding changes to Milan’s traditionally horizontal skyline. (Bosselmann/Urban Simulation Laboratory, Polimi).

Will the simulated world behave in very much the same manner as the real world? The answer to this question is important for urban designers, who use simulations to explore the implications of policy on the form of cities. If response equivalence between simulated and real world experiences cannot be guaranteed, simulations would have no credibility, could be misleading and should not be used in decision making processes. Knowledge about response equivalence falls into the realm of psychology. Kenneth Craik, one of the pioneers in the field of environmental psychology, collaborated with Appleyard in the early years to measure people’s responses to simulated scenes and compare them to responses after an experience of the real world. Answers to the equivalence question involved a large scale validation project sponsored by the National Science Foundation. Residents and nonresidents were randomly selected to tour a suburban environment complete with shopping centers and office parks, followed by the screening of a virtual drive through the same area. Some subjects saw one and not the other, some saw both in the sequence described or vice versa. The experiment concluded that simulations can be surrogates of a real world experience. This meant, ideally, that the simulations should not be presented in static form, but as dynamic animations, produced in a manner that comes close to human experience, moving through space and time. The experiment also acknowledged that subjects who were unfamiliar with the setting reported close to equivalent experiences after the real world tour and after watching a tour of a virtual, simulated world, or vice versa. But for subjects familiar with the real setting, the equivalence of the two experiences was not as strong. For them the real world setting had social meaning that could not readily be simulated. Thus the validation experiment touched upon findings made about the same time, first in geography and later in the field of psychology, claiming that place in cities, neighborhoods and landscapes takes on meaning based upon people’s memory, attachment and dependencies.

Figure 5 Enlarge [+]Left: Judging the correct size of buildings: to see the tower in true dimensions the human eyes create nine distinct perspectives (Bosselmann/Urban Simulation Laboratory, Polimi); Right: Alternatively, additional references are needed to judge the dimensions of the tower. (Bosselmann/Urban Simulation Laboratory, Polimi).
3D GIS model
Figure 6 Enlarge [+]The 3D GIS model that made the Milan simulations possible. (Bosselmann/Urban Simulation Laboratory, Polimi).

The validation project also confirmed a number of earlier theories, first J.J. Gibson’s ecological theory that reminds us of perception’s dynamic process, which operates under constantly changing conditions and frequently in motion over time. As well as Egon Brunswik’s probabilistic theory: The observer builds up a repertoire of probabilities that provides likely conclusions by combining trustworthy clues to give an educated guess about the true nature of a situation or place.

Admittedly, for the everyday user of simulations, perceptional theories would be of limited use, if it were not for the fact that simulations are produced in a highly politicized milieu. Change in cities will always be associated with controversy. Especially when large projects are considered, proponents and opponents rival for public attention, appeal to decision makers and will treat information about change selectively, emphasizing its benefits or detriments depending on who is preparing the case. For an outsider, the credibility gap appears obvious and the difference in the portrayal of the real and the imagined can at times be comical, but for the actors involved the matter is deadly serious, because much can be at stake. Therefore, anybody interested in reducing the credibility gap for the benefit of a more open debate would call for a special commitment among those who produce simulations. Simulations should be representative of the changes that a new project will impose on the conditions that exist and on possible future conditions — ideally, they should consider cumulative change — without exaggerating or diminishing the impacts of change. The modeling should be open to accuracy tests. Realistically, such work could not be expected from proponents or from opponents, but could only be performed by individuals outside the controversy, for example, at research universities.

San Francisco skyline showing potential development
Figure 7 Enlarge [+]San Francisco skyline (Bosselmann/Urban Explorer) with 2004/5 entitlements and potential development under current planning controls; existing skyline, 2008, plus the proposed Transit Tower (Bosselmann/Yon Te Kim).

Modeled after the Berkeley lab, several such laboratories have emerged. For example, in the 1990s the Berkeley laboratory became the model for laboratories at Keio and at Waseda Universities in Tokyo. Here the rationale was developed for exemption from national planning law and introduction of special area planning controls for several Tokyo neighborhoods, including the famous Ginza district; earlier in the 1980s, a new laboratory in New York shaped regulations for Times Square, Television City, the Upper East Side and for West Way. The latest of this type of simulation laboratories was built in 2007 at the Milan Polytechnic with the purpose of examining the insertion of large scale projects into the still largely horizontal cityscape. In these laboratories, simulations are made to support the process of reasoning; modeling turns an abstract idea and transforms it towards the realm of the concrete. Not yet reality, but through simulations urban form and the associated conditions become more understandable. Models allow for greater clarity, and simulations are useful for explaining urban conditions to those who may not otherwise understand the implications of decision-making, such as politicians, community representatives, and the news media — thus the public at large. Simulations alone cannot claim to deliver judgment about good performance, fit or compatibility; the evaluators will make such judgments, but simulations make possible an open, public discussion among evaluators about the magnitude, pace and nature of change, its perceived degree of faithfulness to a recognized tradition — authenticity — or, a conscious break with tradition — a new beginning.

New York City, Times Square, 1985
Figure 8 Enlarge [+]New York City, Times Square, 1985: Simulating allowable building heights and signage control.

With the advent of Geographic Information Systems, perceptual simulation can be combined with spatially referenced data. For example, the attempt by the San Francisco business community to find sufficient land to accommodate 10 million square feet of additional office space is such an abstraction. The Berkeley Simulation Laboratory has a 30-year tradition to show whether and how that much floor space will fit into what is already there. Many contemporary examples for simulation applications come to mind. In California, as population grows, we need to simulate a type of community that is designed to reduce green house gasses consistent with Senate Bill 375.

San Francisco Bay Area, the Randstad in Holland, Hong Kong, and Milan
Figure 9 Clockwise from top left: Simulating population density: four metropolitan areas with seven million inhabitants, San Francisco Bay Area, the Randstad in Holland, Hong Kong, and Milan.

Simulation is a bridge between concept and experience. At the CED we are in the process of opening a new bridge to visualize spatial data at the metropolitan scale. We are calling this new type of laboratory a Global Metropolitan Observatory. It originated out of a strategic initiative proposed to the Chancellor when the faculty were asked to brainstorm about the contribution Berkeley could make to solving the most urgent problems of the new millennium. Our response was a study center with the focus on sustainable metropolitan form. The new observatory will continue Berkeley’s tradition. It speaks to the strength of an educational tradition, when it is carried on by others, when it evolves and when it resonates in professional cultures different from those places where it originated.

The Ginza District under examination at the Tokyo Simulation Laboratory
Figure 10 Enlarge [+]The Ginza District under examination at the Tokyo Simulation Laboratory (Academy Hills, Roppongi).